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Hydrodynamical modes and light scattering in the liquid-crystalline cubic blue phases.
I1. Dynamic theory
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As shown in the preceding paper, the hydrodynamical modes of the cubic blue phases are dis-
placement modes, which are equivalent to acoustic phonons in crystal. We apply the model of a
viscoelastic mixture to describe their dynamics. For the transverse modes the dispersion relations
do not show the expected power-law behavior of the hydrodynamical regime. Instead they display a
flat, widely extended minimum that explains the strange dynamics of light-scattering experiments in
cubic blue phases. Within the kinematical theory of light scattering we propose special geometries
for measuring the material parameters of the viscoelastic mixture. To understand the forescattering,
commonly observed in experiments, and the strong dependence of the fluctuating light intensity on
the incident wavelength, we extend our calculation to the more general dynamical theory. A qual-
itative interpretation of the experiments suggests that the cubic blue phases are highly anisotropic

with regard to their viscous behavior.

PACS number(s): 61.30.—v, 47.35.+i, 42.25.Fx

I. INTRODUCTION

In the preceding paper [1] we studied the elastic the-
ory for the orientational pattern of the cubic blue phases
(BPs) I and II. For the long-wavelength limit we were
able to identify the hydrodynamical modes with displace-
ment modes and we found that the elastic tensor of the
displacement modes had to be renormalized due to cou-
pling to other deformation modes.

This article is devoted to the dynamical behavior of
the displacement modes, which are completely described
by the displacement field u(r) as the hydrodynamical
variable. In Sec. IIB we are going to formulate the hy-
drodynamical equations and investigate the eigenmodes.
Their dispersion relations can be measured in light scat-
tering experiments with special geometries. We will pro-
pose several geometries within the kinematical theory in
Sec. IITA.

Marcus [2] was the first to observe strong fluctuations
in the intensity of light reflected from the orientational
pattern of the molecules, close to Bragg reflections. He
used a backscattering geometry where the wave vectors
k; and kg of the incident and scattered light were almost
antiparallel. He argued that the same fluctuations also
had to be seen in forescattering. Hence further investiga-
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tions [3] were performed in forescattering with scattering
vectors g, = ky — k; ranging from g,/k = 0.001 to 0.04,
compared to the reciprocal lattice vector k = (100) of the
Bragg reflection. Analyzing the time correlation function
(EZ(0) E4(t)) of the scattered electric field, Marcus ob-
tained a superposition of two exponential functions

(E,(0) E,(t) ) ox exp[—21(gs)t]
+0.62 exp[—22(gs)t], t>0 (1)
with relaxation frequencies

21(gs) = 785 s, 22(gs) = 2262 s . (2)
Surprisingly, the frequencies did not depend on ¢, and
remained finite for ¢, — 0. This is an unusual behav-
ior for hydrodynamical modes, which we aim to explain
in this article. Domberger [4] used larger scattering vec-
tors ranging from ¢,/k = 0.14 to 0.28. He also found
two relaxation frequencies, but only one dispersion rela-
tion showed a definitely finite value, 400 s~ for ¢, — 0.
The other dispersion relation tends towards a finite value
of 100 s~ ! for the relaxation frequency at ¢, = 0, but, as
the experiment could not get too close to vanishing wave
vectors, this is not completely certain. Both authors re-
alized strong coupling between the fluctuating light and
the Bragg reflected light. When the incident wavelength
was chosen on the edges of the Bragg band the fluctua-
tions were about 6% of the peak intensity. They consid-
erably decreased in the center or outside the Bragg band.
This behavior cannot be understood within the kinemat-
ical theory. Therefore we have extended the calculations
to the more general dynamical theory (see Sec. IIIB).
It determines the electromagnetic field in the scattering
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material in a self-consistent way. Also the forescattering
experiments can only be explained within the dynamical
theory, as we will show in Sec. IIT A.

II. HYDRODYNAMICAL BEHAVIOR
OF THE DISPLACEMENT MODES

A. Overview

In the preceding paper [1] we extracted the displace-
ment modes from the Landau-de Gennes free energy,
expanded in the order parameter field u(r), and calcu-
lated the elastic constants depending on the Landau co-
efficients and the amplitudes p2(k) of the helical tensor
modes. In the same manner we could derive the dynami-
cal equations of the displacement field and its viscosities.
To describe the alignment of the molecules in the cu-
bic blue phases we choose the local inertia tensor density
©(7) of a small volume as an order parameter. It appears
in the balance equation of the angular momentum. The
problem is that in the blue phases, the principal axes of
©O(7) and the principal moments of inertia change from
point to point. Hence we have to consider the blue phases
locally as a nonrigid body, known in the literature as a
Cosserat continuum [5]. Its dynamical equations are not
yet fully established [5,6]. Only in the special case of
the nematic phase, where the inertia tensor is rigid and
uniaxial, can the Leslie-Ericksen equations be deduced
from the balance equations of momentum and angular
momentum [7]. To formulate the dynamical equations of
the displacement field we need another method.

B. Hydrodynamical equations

We view a cubic blue phase as a viscoelastic mizture.
The first component, the viscous fluid, describes the mo-
tion of the centers of mass of the molecules by the mass
density o(»,t) and the velocity field v(»,t). The second
component stands for the orientational pattern. Its elas-
tic deformation is characterized by a displacement field
u(r,t) of the periodic lattice. The motion of each com-
ponent obeys a balance equation of momentum. Both
equations are coupled by a force fulfilling Newton’s third
law action = reaction. Balance equations for mass and
energy are also taken into account. Then the applica-
tion of the theory of mixtures [8,9] leads to a full set of
hydrodynamical equations including temperature, whose
derivation will be published elsewhere [10,11]. We are
only interested in low-frequency modes. A careful anal-
ysis of the equations including estimates of the material
parameters justifies the neglect of temperature and mass
density variations: 6T = 0 and ép = 0 [10,11]. The sec-
ond relation is the condition for an incompressible fluid.
After linearization the resulting equations are

0=—kp (‘?9—‘: - v) +A(V® V)u, (3)
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Ov Ou .
05 = kp (E - v) + (Ve V) , dive =0, (4)

with

3
A(V® V) =AA+ (A+ XN)graddiv+ Ax Y _(P:V)*P;,

(5)

3
(V@ V) =nA+nx Z(PiV)'*‘-Pi . (6)

=1

Apart from the first term on the right-hand side, Eq. (3)
is the dynamical relation of the linear elasticity theory of
solids where inertial effects of the orientational pattern
are neglected [10,11]. The shorthand notation A(V ® V)
[see Eq. (5)] is defined just as in [1] if the wave vec-
tor q is replaced by the Nabla operator V. Equations
(4) are the Navier-Stokes equations for an incompress-
ible fluid. The operator n(V ® V) is to be interpreted as
A(V®V). In particular, we have to introduce a viscosity
nx which takes into account the cubic point symmetry
of the fluid. The index t stands for the restriction to ve-
locity fields v(r) with a vanishing divergence and hence
having transverse components only. The equations are
coupled by the permeation term, a friction force propor-
tional to the relative velocity of the viscous fluid and the
orientational pattern. The permeation coefficient kp is
an Onsager coefficient like n and nx [10,11]. The mi-
croscopic origin of the permeation is the following: As
molecules flow through the stationary orientational pat-
tern, their axes must follow the local order parameter.
However, their reorientation is hindered by collisions be-
tween the molecules, which lead to a rotational viscosity.
The permeation was first introduced by Helfrich for the
cholesteric helix [12]. Following his calculations we esti-
mate the permeation coefficient as

27\ 2 g
ke =m (5) ~ 100 7
P 7 b em3 s ( )
where ~; is the rotational viscosity appearing in the
Leslie-Erickson equations [13]. We assume a value of 0.1
P for v; and for the lattice constant b of 2 x 10~% cm.
The elastic constants were calculated in [1]:

ergs

A & 1000 —=
cm

s /\'//\QJO.G, Ak /A~ +0.3 . (8)
For the viscosity n we take a standard value [13] = 1
P, while for nx there is no estimate. The mass density
o is approximately 1 g/cm?® [14]. The scaled reciprocal
permeation coefficient

er 1 —7
TpPp=——RI107"K1 9
7 Fp (9)
is an important quantity of our system. Because of its
small value, the friction force between the two compo-
nents is very large and the molecules can hardly flow
through a stationary orientational pattern, as has been
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measured by Stegemeyer and Pollmann [15]. This feature
influences the dynamical behavior of the blue phases and
is the reason why we can neglect temperature variations
[10,11]. Equations (3) and (4) also appear in the dynam-
ical equations of colloidal crystals [16-20]. They have
been used already to analyze mechanical experiments in
blue phases [21-23].

For the solution of the dynamical equations we intro-
duce a plane wave ansatz

ul(ra t) ul(Q)
d(r,t) ;= | u(r,t) | = | we(q) exp(—zt +iq-r) .
vy(7,t) vi(q)

(10)

The displacement field is divided into its longitudinal (in-
dex !) and transverse (index t) components. v only con-
tains a transverse component as a conseqence of divy =
0.

From Egs. (3) and (4) we obtain the generalized eigen-
value problem

0
—A(q ® q) + ka 1 kP lt
0 —zkp1; _[n(Q®Q)]t—kP1t+Z1t
w(q)
x| @ | Zo ay
v:(q)

or, in shorthand notation
D(q,2z)d(q) =0 . (12)

The dynamical matriz D(q, 2) appears as a block ma-
trix. 1; means the identity tensor restricted to the plane
perpendicular to g. The nondiagonal elements have to be
split because u; does not couple directly to vs. The secu-
lar equation for D(q, z) leads to five dispersion relations
z(q). In general they cannot be expressed analytically.
Therefore we will restrict ourselves to special directions
of q in the next subsection.

C. Discussion of longitudinal and transverse modes

In [1] we analyzed the eigenvalue problem

A(g ® q) u(q) = Aegq’ u(q) . (13)

For wave vectors q with a nontrivial little group X(q),
we found longitudinal and transverse eigenmodes. The
structure of the tensor [n(q ® q)]¢, the transverse part of
7(g ® q), is the same as the transverse part of A(q ® q)
[compare Egs. (5) and (6)]. Hence [(¢g®q)]; and A(g®q)
have the same transverse eigenvectors. Because the re-
maining tensors in D(q, z) are isotropic, the generalized
eigenvalue problem (11) splits into the eigenvalue prob-
lem of the longitudinal mode

(= e ¢ + zkp)ui(q) =0 (14)
and two identical of transverse modes

—Aesr ¢° + zkp kp
—zkp —Neg ¢° —kp + 2

x ("‘(q’z)) =0 . (15)

Ut (qa Z)

For the transverse case, A.g and the effective viscosity
Nest show the same dependence on A\, Ag and n,7ngk, re-
spectively [1]. If the symmetry of K(gq) is just a mirror
plane, only one eigenvalue problem for a transverse mode
can be separated from the general one of Eq. (11).

The dispersion relation

’\eﬂ 2
kp !

z1(q) = (16)
of a purely diffusive, longitudinal mode follows immedi-
ately from Eq. (14). The deformed orientational pattern
relaxes slowly towards its equilibrium structure by mov-
ing through a fluid at rest which does not allow a longi-
tudinal component of the velocity field. z;(g) is propor-
tional to g?, a behavior often found for hydrodynamical
modes.

From Eq. (15) we obtain the dispersion relations of
two transverse modes

1 2 [ Neff Aeﬂ') . Aeff ( q )2
z = — + + 1-1=),
t1/2(Q) 2 q ( P kp q P .
(7)
where we have introduced the wave number
V )‘eﬁ/g

qp =2 . 18

®= 2 /o — New /P (18)

From the values of kp, A, 7, and o given in Sec. II B and
with Eq. (9) we estimate

~ 63 cm™! (19)

or, relative to the lattice constant of the reciprocal lattice,
bgy/2m =~ 2 x 1074, g gives rise to a bifurcation in the
dispersion relation. We therefore discuss two ranges of g.
1. ¢ < gp. The elastic deformation of the orientational
pattern allows two propagating modes. From Eq. (15)
and condition (9) one finds for the velocity amplitudes

ve(q, 2) = —2t1/2 ui(q,2) . (20)

Because of the strong friction force, due to the perme-
ation, the orientational pattern drags the fluid along
when it relaxes towards its equilibrium structure. The
relaxation frequency Rez,; /3 is determined by the viscos-
ity of the fluid only. The oscillation frequency Imz;; /.
is shown in Fig. 1. Here and in the following figures the
frequency and the wave number are given relative to
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' ' ' ' Neff Aeff __ Meff
1} . 21(g) = = ¢ - = x =42 (23)
Tleft e
f\ 05k Imztl B
8 Aeﬂ' 2 Aeﬂ'
= 2t2(9) = —q¢°+ — . 24
U 2(9) kp Teft (24)
g -05f Imzg . The two modes relax on different time scales as is clearly
| seen in Fig. 2. 2;;(q) belongs to the damped transverse
-1 e mode of a liquid. For light scattering we are only inter-
0 05 1 15 2 25 ested in the second, slowly relaxing mode. It shows a very

g (32cm™?)

FIG. 1. Oscillation frequencies Imz;;/; of the propagating
transverse modes (q||cs).

=~ 1000 l, @ =~ 32 L . (21)
s n cm

For small wave numbers Imzy, /; is linear in q. The effec-
tive elastic constant A.g determines the phase velocity.
For increasing wave numbers the oscillation frequency
traverses an extremum at g¢/v/2 and approaches zero at
gy With a vertical tangent.

The discussed range has been used in the above men-
tioned mechanical experiments of the blue phases [21-23].
The following range is important for light-scattering ex-
periments.

2. g > gp. Figure 2 contains a logarithmic plot of
the relaxation frequency versus g2. The wave vector is
chosen parallel to a fourfold axis ¢4. The largest value
of q is approximately 10% of 27 /b. The vanishing of the
propagating modes is visible in a bifurcation of Rez; /2
at g,. Two branches grow out from one with a vertical
tangent. The relaxation frequency at g is

At 9000 1.
TNeft S

z1/2(q0) = 2 (22)

In the case of ¢ > g, we pull —(q/gs)? out of the square
root in Eq. (17) and expand it to the first order in g3 /g.
This leads to the following approximations:

[ W
o
S
S 4
=
N 4
L
~
= Rezy
0
2
1 qb 1 1 1 qm 1 1
0 1 2 3 4 5 6

logyo {lg (32em™))*}

FIG. 2. Relaxation frequencies Rez;; /2 of the propagating
transverse modes (q||c4).

unusual behavior. Rezi2(q) goes through a flat, widely
extended minimum and then increases slowly, propor-
tional to g2 with a slope typical for a longitudinal mode.
The mimimum can be calculated via a Laurent expansion
in (7p)/4:

Aegr 14 1 o
~ — ~ — = 0.006 — 25
dm [gkp 3 ] 1780 om b (25)

and
’\eﬂ'
Neft

zt2(gm) = ~ 1000 é . (26)
gm is situated in the range of scattering vectors g, used
by Marcus (3] and, as we will show in Sec. III, his mea-
sured frequencies must be identified with z;2(gm)-

Figure 3 shows the relaxation frequencies of all three
slowly relaxing modes with g||c; plotted versus g2. Apart
from the material parameters given in Sec. II B, we have
chosen Ag /A = 0.3 and ng = 0. The minimum is now
situated close to g2 = 0, and on this scale it appears as if
the relaxation frequencies are finite for ¢ — 0. The values
of zt(zl)(qm) and zg)(qm) differ slightly due to Ax # 0.
As for q < g¢p, we essentially find that the fluid and the
orientational pattern approximately move with the same
velocity. Nevertheless, for increasing g the fluid cannot
completely follow the orientational pattern. For example,
for gb/2m =~ 0.1 (that corresponds to the highest ¢ value
in Figs. 2 and 3) the velocities differ by 10%.

In the case of a general direction of the wave vector g
we cannot decouple the eigenvalue problem of Eq. (11).
One can show that the five dispersion relations do not
admit common points and therefore are deformed com-

1.4 T T T T
1.2 M
- 1 /ﬂt

g Rezt(g)
§ 0.8 | b
a 06F A
3 o0af . 1
ez

02l 11 i

0 ; . . .

2 x 10° 4 % 10° 6 x 10° 8 x 10° 108
lg (32cm™)]?

FIG. 3. Relaxation frequencies Rez;/:z of the slowly relax-
ing transverse and longitudinal modes (q||c2).
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pared to the symmetry directions of q. But, in principle,
the five modes possess the same behavior. In particular,
two of the three slowly relaxing modes will have the flat,
widely extended minimum in their dispersion relations
whereas the third will resemble the longitudinal mode.

D. Correlation functions

The discussion of light scattering in terms of displace-
ment modes requires the time correlation function for the
Fourier coefficients of the displacement field

(u*(q,t =0) @ u(q,t)) . (27)

It will be determined by solving an initial-value problem.
We assume a nonvanishing amplitude u(q,t = 0) due to
thermal excitations and want to know how it develops
in time. We therefore introduce a Laplace and Fourier
transformation of the dynamical equations (3) and (4).
With the Fourier-Laplace transform

u(q,z) = / /u('r,t) exp(zt —ig-r)d3rdt , (28)
0
and the same definition for v;(q, z), we obtain
D(q,z)d(q,z) = Ad(q,t = 0), (29)

where we have introduced a block matrix

kpl g
A= . (30)
0 —kpl; 1,
From Eq. (29) it follows that
1 ~
= —_— A = .
d(q7 Z) det[D(q, Z)] (q3 Z) d(q,t 0) (31)
The determinant
5
det[D(q,z)] = k3 [ ][z — =] (32)
=1
comes from D~1(q,z) and A(g,z) = det[D(q,z)]

D~'(q,z)A. The transformation to the time variable
yields [24]

A(g,29) [z — 29
det[D(q, 2)]

x exp[—2Vt]d(q,t =0) , t>0 . (33)

d(g,) =Y lim
i=1

The time correlation function (27) follows from Eq. (33)
by an ensemble average. It involves the correlation func-
tion (u*(q,t = 0) ® v(q,t = 0) ), which vanishes because
of its behavior under time reversal [25], and the mean
square amplitude of the displacement field [26,27]

kT

A @®9) 8y - (39)

(u"(@) ®@u(q)) =
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V denotes the volume of the system. Equation (34) is
understandable within the equipartition theorem. Note
that there do not exist any correlations between different
amplitudes in the system of eigenvectors because A7 (gq®
q) then has diagonal form. A general determination of
the time correlation function is not possible since the
zeros z(*) are not known. Thus we restrict ourselves to
symmetry directions of q.

1. Longitudinal modes. The amplitude u;(q, z) does
not couple to the velocity field. We get

ul(‘]a = 0)

—_—, 35
—Aetq?/kp + 2z (35)

uy (q7 z ) =
and after the transformation to the time variable the only
nonvanishing time correlation function is

kT 1

(ui(gt=0)w(qt))=—— gy exp(—zt). (36)
2. Transverse modes. The time evolution of u:(q,t)

and v:(q,t) for ¢ > qp reads

Aeff 1
u(@t) ) L || (erq)?  memq® _
(’U:(q,t) ) ~ é el exp(—zut)
Neff
1
1 2
Neffqd
+ Aeff eff exP(_ztzt)
Nt (Meq)?
Ut (‘L t= 0)
. 37
x(vt(q,tzo) (37)

We neglect the small, fast relaxing contribution from z;;
and get

kgT 1

(u:(q7t = O)Ut(qa t)) ~ T qu eXP(—tht). (38)

In fact, the thermally excited displacement modes also
couple to microscopic excitations of the system. In the
dynamical equations this coupling has to be taken into
account by a stochastic force. But the ensemble aver-
age of this stochastic force vanishes [25] and our calcula-
tions of the correlation functions are correct. Hence the
complete information about the displacement modes is
contained in (u*(q,t = 0) ® u(q,t)).

III. LIGHT SCATTERING
FROM DISPLACEMENT MODES

Light scattering is governed by the inhomogeneous part
de(r,t) of the dielectric tensor e(r,t) = € + de(r,t). In
cubic blue phases the average £ is isotropic

1
E=¢1= 3 tre(r, t) (39)
and de(r,t) corresponds to the order parameter field in-

troduced in [1]. The Fourier expansion of the order pa-
rameter field deformed by displacement modes reads [1]
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de(r,t) = Z de(k) exp(ik - r)

k
+> de(k+q,t)expli(k+q) 7]  (40)
q.k
with
de(k) = dea(k) M2 (k) (41)
and
be(k + q,t) = —[iu(q,t) - k)dea(k)My(k) . (42)

We remind the reader of the definition of M, (k):
1

V2

{&,m,k/k} is a right-handed system of orthonormal vec-
tors and the complex vector m(k) fulfills

Ma(k) = m(k) @ m(k) , m(k) = —= (& +in). (43)

m*(k) -m(k) =1 , m(k)-mk)=1. (44)

For all calculations de;(k) is chosen real and
Miy(—k) = M* (k) . (45)

de(k) and ée(k + q,t) are responsible for the Bragg
reflection and the fluctuating light intensity, respectively.
Both the kinematical and the dynamical theory are only
valid for small inhomogeneities de. An analysis of Bragg
reflection on the basis of the dynamical theory leads to
[28,29]

Jeiﬂ ~003<K1 . (46)

A. Kinematical theory

Within the kinematical theory [25] Maxwell’s equa-
tions are solved by the first-order Born approzimation
[30]. The incident light, described by the plane wave

VE

Ei(’l',t) = Eoﬁl exp[i(ki P — wit)] R kl = T w;
(47)

does not lose intensity when passing through the scatter-
ing medium. It only excites weak spherical waves which
interfere to form the scattered light field. At a large
distance r from the scattering medium the electric field
appears as a plane wave with a time modulated ampli-
tude

Eok2V R )
E,(r,t) = 47”;:’_ 8eif(gs,t)Py expli(kys - r — wit)],

(48)
where

0eif(gs,t) = N} - 6e(qs, )i . (49)

Scattering only occurs if there exists a Fourier coefficient

for the scattering vector g,, which obeys Bragg’s law:

q,:kf——ki ) kiZkf . (50)
The calculation of E,(r,t) assumes that the system is
embedded in a homogeneous medium with the dielectric
constant & [25]. For comparison with experiment one has
to take into account the refraction of the plane waves
[31] at the boundaries of the system under investigation.
From Eq. (48) we obtain, for the measurable quantity,
the time correlation function of the scattered electric field

(E5(r,0) Eq(r,t)) o (8ei;(qs,0)0€:i5(gs51) )
x exp(—iw;t) . (51)

To analyze light scattering the time correlation function
of d¢;¢(qs,t) has to be considered.

The Bragg reflection from the periodic orientational
pattern yields a static contribution

(Je;‘f(k,o)ds,-f(k,t))
= [Sess (R)I? = |bea (k) 2[R - m(R)] A} - m(R)]” .

(52)

The tensor modes of helicity m = 2 possess a left circular
polarization [32]. An investigation of Eq. (52) reveals
that only light with the same polarization is reflected
[33].

Light scattering from displacement modes is governed
by

(6e3;(k + q,0)6ei5(k + g, 1))

= |0eiz (k)|*([u"(q,0) - k] [u(a,t) - k) . (53)

Because of the limitation ¢ < k [1] we consider scatter-
ing only in the vicinity of Bragg reflection. The theory
does not predict a forescattered intensity, as observed by
Marcus [3] and Domberger [4], since the right-hand side
of Eq. (53) vanishes for k = 0. The polarization of the
scattered light is determined by the first factor |de;¢ (k)|?,
as discussed above.

The second factor of Eq. (53) contains the time cor-
relation function (u*(q,t = 0) ® u(q,t)) of Sec. IID

— &
F
o

\ i (Ac ki 9,
S
o T
2 2 k; 2
FIG. 4. Three scattering geometries to determine the dis-

persion relations of the longitudinal and transverse displace-
ment modes.
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TABLE I. Effective elastic constants and viscosities appearing in the measurable displacement
mode of wave vector g and polarization p. The three scattering geometries (1), (2), and (3) are
considered for two orientations of the blue phases relative to the cell normal d.

d Geometry k q P Aeft Nest
es (1) es es l 2A+Al+/\K
(2) es cosPe; +sindPe; t A n
(3) €3 €3 l 2 =+ AI -+ AK
(e1+e2)/V2 (e1 +e2)/V2 I 22X+ X +Ak/2
(e1+e2)/V2 (1) (e1+e2)/vV2 (er+ez)/vV2 1 22X+ X +Ak/2
(2) (e1+ e2)/V2 q° t A+cos?®Ak/2 n+ cos® Dk /2
(3) es es l 22 4+ N + Ak
(e1 —e2)/vV2 (e1—e2)/vV2 1 224N +Ag/2

2q = cos ®(e1 — e2)/+/2 + sin Pes.

projected onto the reciprocal wave vector k. In general
it depends on all three slowly relaxing modes. We intend
to propose special scattering geometries which allow one
to measure longitudinal and transverse modes separately.
In Fig. 4 we consider three such geometries. The horizon-
tal line symbolizes the liquid crystal cell with its normal
vector d. (1) and (2) are called Bragg cases because the
light is scattered back to the half space from which it is
incident. In the Laue case, geometry (3), the light passes
through the cell. The different dispersion relations z(q)
are measured by varying q via the scattering angle 9, or
the wavelength 27/k; of the incident light. In (1) and
(3) q is parallel to k and for the symmetry directions of
q the gradient Ag/kp of the dispersion relation z;(q) of
the longitudinal mode [Eq. (16)] can be determined. In
geometry (2) transverse modes are measured at least for
small wave vectors q and z:2(q) gives the gradient Aeg/kp
and the finite frequency Aegr/7est [Eq. (24)]. Normally the
fourfold axes c4 of the blue phases are oriented parallel
to d. In BPII dl|c; was also realized [4]. For these two
orientations, we summarize, in Table I, the effective elas-
tic constants and viscosities which appear in the different
dispersion relations using the three scattering geometries.
Note that the geometry (3) also requires an orientation
perpendicular to d.

Concerning the proposed experiments, we stress three
points.

(i) There are six material parameters A\, N, Ag,n, 7k,
and kp. From light scattering one obtains only five rela-
tive to the sixth.

(ii) All three elastic constants can be measured relative
to kp using one orientation.

(iii) The two viscosities have to be determined from
transverse modes and both orientations (d||cs and dj|cz)
are needed. In the BP I the second one was not observed.

A complete interpretation of Marcus’s and
Domberger’s experiments is only possible if we under-
stand the forescattering. This will be done in the next
subsection.

B. Dynamical theory

The dynamical theory [34,35] tries to solve Maxwell’s
equations inside the scattering medium in a self-

consistent way, taking into account the interaction be-
tween the incident and scattered waves. Then the wave
field is extended to the space outside the medium via
appropriate boundary conditions.

1. Four-wave approzimation

We start with an equation of the dielectric displace-
ment field where we assume a harmonic time dependence:

2
(graddiv — A)fe ™ (r)D(r)] = 5 D(r) . (54)
Additional contributions in Eq. (54) resulting from tem-
poral modulations of e~1(r,t) with frequencies much
smaller than w are neglected. For the small inhomoge-
neous part de(r) one finds

(55)

We counsider first the undeformed orientational pattern.
The differential operator of Eq. (54) possesses cubic
translational symmetry and Eq. (54) is solved by a Bloch
function of wave vector kg [36]

D" (r) = ZDk expli(ko + k) 7] , Dp Llky+k .
k

(56)
With the scaled quantities
Yk =0)=(c—1)1 (57)
and
(k #0) = de(k #0) (58)

we finally arrive at a set of linear equations for the ampli-
tudes Dy, the fundamental equations of the dynamical
theory
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[—(kp + k) ® (ko + k) + |k + k|?1]
2
—_ w
X kE' € l(k—k,) Dkl = c—sz . (59)

ko = VEw/c is the wave number of light traveling with
frequency w in a homogeneous medium of dielectric con-
stant €.

The Bloch function D*s(r) consists of a sum of plane
waves. In the case of light scattering the wave vector kj
belongs to the incident light, while the others describe
scattered waves. We are only interested in the wave vec-
tor range close to Bragg reflections. The kinematical the-
ory correctly describes their position by Bragg’s law (50),
but not their intensities. In the Bloch function (56) we
therefore consider merely wave vectors which nearly sat-
isfy Bragg’s law. The dimension of the set of fundamental
equations (59) is reduced considerably.

Figure 5 shows the scattering geometry of the exper-
iments of Marcus [3] and Domberger [4], which we will
study in the following. The cubic blue phase is enclosed
in a liquid crystal cell with boundaries at z = 0 and d.
The wave vector of the incident light is ko/ /. Besides
the usual refraction, governed by &, the dynamical theory
takes into account an additional refractive index 1 + o
due to the inhomogeneity of e(», t):

o6=1+d)ko , So<1. (60)

Because the inhomogeneities de in the dielectric tensor
are small, §¢ is small too.
We solve Eq. (59) by the ansatz

D*s(r) = Dg explikl - 7] + Dy exp[i(kh + k) - 7|
+Dytq expli(kyg + k + q) - 7] (61)
+Dg expli(ky +q) - 7] ,

the four-wave approzimation. The third plane wave de-
scribes the scattering from a displacement mode. In the
above discussion we had restricted ourselves to the un-
deformed orientational pattern because the displacement
modes destroy the translational symmetry and the Bloch
function (56) cannot be chosen as a solution of Eq. (54).
On the other hand, this third contribution appears in the
kinematical theory and we will take it into account by the

e =¢1+ ée

z=d

FIG. 5. Scattering geometry of Marcus [3] and Domberger

[4].
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amplitude 4 (k + g) in the fundamental equations (59).
We consider only one displacement mode, i.e., we ne-
glect the coupling between light scattering from different
modes. The fourth plane wave describes the forescat-
tering with an effective scattering vector q. It can be
justified by two double scattering processes illustrated in
Fig. 6. The single scattering events have to fulfill Bragg’s
law only approximately. In the second process the wave
vector —(k — q) is involved and we must also use the
amplitude ¥[—(k — q)] in the following.

We insert the ansatz (61) into the fundamental equa-
tions (59), choose all Fourier coefficients besides v (+k)
and [+ (k £ q)] zero, and get four vector equations

~k§ 280 Do = [k ® kg — |ko| 1]
x{(—k) Di + ¥[—(k + q)] Di+q},
(62)

—kj (cy — 280) D = [(ko + k) ® (kg + k) — |k + k|°1]
X[ (k) Do + ¢ (k — q) Dy, (63)

-—k(z) (az - 260) -Dk+q
= [(ko +k+q) ® (ko + k +q) — ko + k + q|*1]
x[¥(k + q) Do + 1 (k) Dg), (64)

—kg (03 + 250) Dq

= [(ko +a) ® (ko + q) — ko + qI”1]
x{[—(k — q)] Dy + ¥(—k) Dy+q} . (65)
In the left-hand sides of the equations only the lowest

orders in ¢/k and 8o and k = —2ko have been taken into
account. The introduced quantities

a; = (2ko -k + k*) /K2 , (66)
(1)
9
/ Ep kg
E + -k =
k!, ks kg&k,,
q
(2)
k/l k]l
k + =
ky —k| \ kr2 ko [\k!z
e T

FIG. 6. Double scattering processes to explain the forescat-
tering with an effective scattering vector q.



2334 HOLGER STARK AND HANS-RAINER TREBIN 51
az = [2ko - (k + q) + (k + q)?]/k2, (67) jé(i“)_=7 Cy=lor —1 (73)
¥ (k)|
and and
as = (2ko - q + q%)/k§ (68) k +
0 ¢|(¢(k)‘ll) =, er=—iyu(g) -k . (74)

vanish if ko and the scattering vectors k, k+gq, or q fulfill
Bragg’s law. The free parameter §o is determined by the
claim that we have a nontrivial solution. In general there
are eight different values possible, so that each scattering
vector in the ansatz (61) is represented by a bundle of
eight plane waves.

2. Determination of the light-scattering intensities
From Egs. (41), (42), and (58) we get

(k) = p(k) Ma(k), $(k) = L 0ea(k),  (69)
and
P(k+q) = ¢(k + q) M2(k) (70)
with
P(k+q) = —iu(q) - kP(k) . (71)
Introduction of new scaled quantities leads to

50 Q;

An important parameter will be
e =le1| = |u(q) - k| . (75)

The wave vector k gives a preferred direction of the
scattering geometry. We use the complex unit vector
m(k) from Egs. (43) to introduce

DO = D01 m* (k) + D0_1 m(k) (76)
and
D;, = Dy, m(k) + Dp_1m* (k) . (77)

The first components describe left and the second com-
ponents right circularly polarized light waves.
From Egs. (62) and (63) follow the relations

60Do_1 =0, (al - 260)Dk—1 =0, - (78)

where Eqgs. (43) — (45) have been used. According to the
first equation, right circularly polarized light does not in-
teract with the inhomogeneous medium (6o = 0 « kj =
ko). Due to the boundary conditions (see below) Dj_;
always vanishes and the Bragg reflected light is left cir-
cularly polarized, as we have already seen in Sec. III A.

—_— ) 6 7 s 72 « .
2|4 (k)] ° 0 2yp(k) “ (72) The remaining six equations are
J
%1 % 0 —26, 0 0 m*(k) - Disq
el gl
— —= - D
0 ay + 26 5 5 0 0 k1
—ay + 26 0 Y 1 0 0 m(k) - D,
2 2 =0.
€
% —_ ?1 —Q3 — 250 0 0 0 DOI
2 2
0 0 'y(m(k) : %) e (m(k) %) % —6% 0 m(k) - Dyiq
'y(m*(k) %) —&1 (m*(k) %) 0 0 0 % + o m*(k) - D,
(79)
[
A nontrivial solution needs a vanishing determinant of and
the framed matrix. For each set of parameters a; and €, @)
the four zeros 5(()1) were calculated via the exact formula, m(k) - D.(,i’ = w((li)D(()il) = ve; %q D(()il), (82)
which was implemented in a FORTRAN program. The ngl)ng)
amplitudes follow from Egs. (79):
. o o 5 where we use the abbreviations
D) = (' Df) = —2¢ =5 DY, (80) _ ‘ ‘
2 2 =1+ 4(as + 2689) (a2 + 2657) | (83)

(%)
Z .
oo Dy (81)
nl‘t n21.

m* (k) - D), =zt Dol = —e1

n$) =14 + 4(az + 2657) (—on + 263) (84)
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Zl(ci%)—q = 2[az + (a3 + 25(()i))";i)]’ (85)
and
z,(:) = 4daz(—a2 + 258”) - ngi) . (86)

The amplitudes m(k) - D(k+q) and m*(k)-D(q) vanish
for 269 = as and 269 = —as, respectively, due to the
boundary conditions. Otherwise they are a factor (g/k)?
smaller than the corresponding amplitudes m* (k)-D(k+
q) and m(k) - D(q) and can be neglected. Hence the
scattered light is nearly left circularly polarized.

The bundles of plane waves of the different light rays
in the medium are the incident light ray

4
exp(—twt + 1koz) Z D& explikos )z m* (k) | (87)

=1

the light ray with scattering vector k

4
exp[—iwt +i(ko — k)2] Y D) explikod’ 2] m(k) , (88)

i=1
the light ray with scattering vector k + ¢q

exp[—iwt + i(ko — k)z + iq - 7]

4
x Z m*(k) - D,(:iq exp[ikoé((,’)z] m(k) , (89)
=1

and the light ray with scattering vector g

exp[—iwt + ikoz + iq - 7]

4
x 3" m(k) - DY explikod’ 2] m* (k) . (90)
i=1
The four still unknown amplitudes D(()i1 are determined
from boundary conditions.
1. The incident wave. The incident wave outside the
scattering medium with the relevant polarization is

Eo(r,t) = Egm* (k) exp(—iwt + ikoz/\/g_) . (91)

At z = 0 it has to change into the bundle of Eq. (87)
where the tangential component of the electric field must
be continuous:

S D) = ek, . (92)

The inhomogeneity de(r,t) is neglected.

2. The Bragg case. The bundles (88) and (89) of the
scattering vectors k and k + g have to vanish at z = d
because they are scattered back in the half space z < 0:

4
> Diei=0 (93)
i=1
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and
4 .
Zm*(k) -D;:lqc,- =0 . (94)
=1
Here we have introduced
¢; = exp[i4As}) (95)
with the optical thickness
A= kodly(R)|/2 . (96)

The kinematical theory is valid for A <« 1 [35].
3. The Laue case. The bundle (90) of scattering vector
q has to vanish at z = 0:

) m(k)-D{) =0 . (97)

i=1

Using Eqgs. (80) — (82) we finally get an inhomogeneous
system of four linear equations with the solutions

i) _(3),.(k)
Elijk .’Eg Ty xk+chck
(3),.(3),.(k)
> Elijk Tq Ty, Tiy gCiCh
1

DY = eE, (98)

(Einstein’s summation convention is assumed). &;j5; de-
notes the permutation symbol in four dimensions:

1, even permutations of 1234
€ijkl = 4 —1, odd permutations of 1234 (99)
0, other cases .

For the calculation of the light scattering intensities
we have to know how the bundles appear outside the
scattering medium. The single plane waves fulfill two
conditions: (i) the tangential component of a wave vec-
tor behaves continuously at the boundary [34,37] and (ii)
outside the medium 5((;) vanishes and k{ has to be re-
placed by ko/+/Z. Hence a bundle of plane waves merges
into one. Its amplitude is calculated as a sum of the single
amplitudes weighted by the factors exp[ikots(()l)z], where
the boundary conditions of the electric field also have
to be considered. z is the coordinate of the boundary.
We refer all light-scattering intensities to the intensity
Iy = |Eo|? of the incident light and get for the scattering
vector k

2

N0
Iy, Ez: k1
Iy EFEy

% 1) _(k
_ Elijk an(ll)z,(l )ngj)z,(ﬂ_)ch Ck (100)

1) _(z ] k
Elijk n(ll)ng )Z,(; )ngj)z,(hgchck

the scattering vector k + g
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2
) ol

Ik+q —
Iy EE,
i) G 2
2 Elijk Z,E’l_z_qz.(l )ngj)z,(:_?chck
=¢ T , (101)
o0 @) (&) () (k)
Elijk My Mgy Zq Ny Zk+chck
and the scattering vector g
o2
> cam(k)-Dqg
I _|\@d
Io 5E0
i) G) (k 2
2 Elijk C[Z,(Il)zé )ngj)z,g_gchck
=¢ — (102)
erir nDp® 60 @) (F)
lijk Ty My Zq "My 2 gCjCk

3. Discussion

What are the appropriate variables for discussing the
calculated intensities? a; is a measure for the deviation
of the wavelength A = 2w /kq of the incident light from
the Bragg wavelength Ap = 7 /k:

- . @ 1 N A—AB 1
""‘4<1 2k>2|¢(k)|~4 o 2 (R)]

. (103)

One task will be to determine the wave vector g of the
displacement mode which contributes most to the light
scattering intensities 4 and I;. We choose the compo-
nents of g parallel and perpendicular to the z direction:
g3 and q, . Neglecting the small variations of A, a con-
stant ¢, is equivalent to a constant scattering angle. In
the following pictures we therefore fix ¢, and show the
intensity dependence on a3 and g3. The components used
are in scaled units

g3 1 qL 1
- , L, 104
Fopm % ke (10
and the scaled as and a3 are given by
az ~ —4q3 + o + [Y(k)|(8¢% — 6aigz + af) ,  (105)
as ~ 4qs + 2|y (k)|(4¢% + a1q3) - (106)

For the discussion we use one set of parameters. Usual
values for the thickness d and the lateral extension ! of
the platelets of cubic blue phases are [4]

d=12 ym , [=30 pm . (107)
‘We choose the lattice constant
2

b=02pum — k= % =31.42 yum~'  (108)

and take the amplitude (k) according to experiment

[28,29]

lp(k)| = 0.0265 — A=25. (109)

The fluctuating quantity € = |u(q) - k| follows from Eq.
(34) where the anisotropy and the different polarizations

are neglected:
1/2
) ~ 0.02 .

(110)

kgT k2

6(9¢,43)=80g2 , Eo=<———2
q V' Aerrqs

We have chosen go = 7/l, V = dI2, Aeg = 1000 ergs/cm3,
and T = 300 K (kg = 1.38 x 107'® ergs/K). The fi-
nite extension of the platelets does not allow wave vec-
tors whose components ¢z and ¢, are both situated
in [-7/d,n/d] and [—-m/l,7/l], respectively. Whenever
this occurs we set Ipiq and I, equal to zero. The in-
tensities will be discussed for ¢, = 0.02, 1.00, 1.50,
and 3.00. In unscaled units the values correspond to
qi/k = 1073, 0.053, 0.080, and 0.160. They cover the
range used by Marcus [3].

Figure 7 shows a three-dimensional representation of
I}, and its contour plot for ¢; = 0.1. Only in the vicinity
of g3 = 0 does the intensity decrease slightly, due to the
light scattering from displacement modes. For constant

W
W

A N
i \\\\\\\\\\\\\\\\\5\\\\‘“\\\
W

3
12
11
10 93
{-1
12

5 4 32 -1 01 2 3 4 5

0

FIG. 7. Three-dimensional representation and a contour
plot of the light-scattering intensity I; relative to Io depend-
ing on a; and g3: ¢ = 0.1.
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FIG. 8. Three-dimensional representation and a contour plot of the light-scattering intensities Iz 4 relative to Ip depending
on o; and gs: (a) g1 = 0.02, (b) g1 = 1.00, (c) g1 = 1.50, and (d) g1 = 3.00.
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FIG. 9. Three-dimensional representation and a contour plot of the light-scattering intensities I, relative to Iy depending on
a1 and gs: (a) gL = 0.02, (b) gL = 1.00, (c) g1 = 1.50, and (d) g. = 3.00.
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g3 the typical curve of a two-wave approximation is seen
[35]. Note that the intensity of the Bragg reflection is
nearly one. From the experiments we know that the edges
of the Bragg band are important. Here they are situated
at a; = £1.5.

We have studied Ix4/e% and I, /e? for different e < 0.1
and found that they only weakly depend on . This can
be understood from the following consideration. Usually
the small quantity €2 can be neglected. Only in one term
in the determinant of the framed matrix in Eq. (79) is
this not possible. As a result, we may replace the fac-
tor €2 in Egs. (101) and (102) by (e}(t)€1(0)). The
same time correlation function appeared in the kinemat-
ical theory [Eq. (53)] and therefore all statements about
the measurement of dispersion relations remain valid.

Figure 8 represents the intensities I 4 for the four dif-
ferent components q . Iiiq differs from zero only in a
narrow range of gz. The location of the maximum for
constant a; follows qualitatively from Bragg’s law. The
figure with g, = 0.02 contains two sharp peaks at g3 =~ 0
and a; = £1.5, i.e., at the edges of the Bragg band. This
is exactly what Marcus saw in his first experiments [2].
But our calculated intensity is still a factor 100 smaller.
It becomes larger for decreasing elastic constants and for
an increasing thickness d [Eq. (110)]. In the last case the
finitely extended system allows smaller wave numbers gq.
Also the optical thickness A and therefore the scattering
power of the system increases with d. The strong decay
of Ijq for |a;| > 1.5 depends on the 1/q behavior of €
[Eq. (110)]. At larger ¢, the right maximum remains
at a; ~ 1.5 and the left one moves to smaller values of
a1. Finally there appear two additional maxima in the
expanding valley. At last we judge the scattering geome-
tries given in Fig. 4. In the first one, we have to choose
¥, = 180° for a comparison with our calculations. ¢, is
zero and from Fig. 8(a) we realize that the variation of the
light wavelength A “stimulates” different g3, but they do
not exactly obey Bragg’s law. Geometry (2) corresponds
to a; = 0 and the scattering intensities are small. To
increase them one has to change a7, but then the wave
vector q possesses a general direction and a superposition
of all three displacement modes is measured.

Figure 9 shows the intensities I;. For ¢, = 0.02 four
sharp peaks exist at a; ~ +1.5 and g3 =~ £0.15. In the
contour plot the maxima at the top left and at the bot-
tom right can be identified with the first double scatter-
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ing process of Fig. 6, because the scattering vector k + q
best satisfies Bragg’s law. The third and fourth maxima
belong to the second process. The peaks with negative g3
vanish for increasing ¢, . The others expand and two new
maxima appear. Again the maximum at a; =~ 1.5 does
not move and the whole contour lines shift to the left. A
maximum is always present at a; = —1.5. The forescat-
tering experiments also show these large scattering inten-
sities at the edges of the Bragg reflection [3,4]. However,
our calculations imply that the situation is more com-
plicated. Finally we are able to judge the frequencies
measured by Marcus [3]. We concentrate on Figs. 9(a)
and 9(b). The maxima lie symmetrically about g3 = 0.
Because of the cubic point symmetry, the wave vectors
q are equivalent. But they possess a general direction
and all three slow relaxing displacement modes should be
seen. Two of them show the behavior of the transverse
modes. Their “finite” frequencies Aeg/7es correspond to
the two measured ones. The frequencies of Marcus [3] dif-
fer by a factor 3. We can explain this factor from Aeg /7est
only if we assume a large anisotropy for the blue phases.
In our first article we found a small elastic anisotropy
Ak /A = £+0.3. Hence the viscous behavior must be highly
anisotropic. The relaxation frequency of the third mode
tends to zero with q. It corresponds to the low frequency
noise also measured by Marcus [3].

The dynamics of the light-scattering experiments of
Marcus [3] and Domberger [4] can be well understood
by the dynamics of the displacement modes. So far
only estimates for the introduced material parameters are
available. Further experiments are necessary to measure
them, especially the permeation coefficient, and to ver-
ify our conclusion that the cubic blue phases are highly
anisotropic with regard to their viscous properties. The
dynamical theory of light scattering gives a very com-
plex behavior of the light scattering intensities, which
also needs to be confirmed.
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